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We theoretically analyze the synchronized and desynchronized phases of coupled nonequilibrium polariton
condensates within mean field theory. An analytical condition for the existence of a synchronized phase is
derived for two coupled wells. The case of many wells in a two-dimensional disordered geometry is studied
numerically. The relation to recent experiments on polariton condensation in CdTe microcavities is discussed.
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Polariton condensates in semiconductor microcavities
provide us with novel macroscopic quantum objects, whose
precise experimental1 and theoretical2–6 characterizations are
presently an active field of research. A realistic description of
the actually realized polariton condensates requires to take
into account the interactions between polaritons, pumping,
losses, and the disordered potential landscape. This potential
is due to fluctuations in the growth process of the semicon-
ductor heterostructure and contains in CdTe microcavities
typically a few deep minima within the condensate area. In
the presence of such a potential, the question naturally arises
whether a single condensate is formed that is modulated by
the disorder potential yet phase coherent over its size, or
rather several independent condensates with different fre-
quencies are formed. In recent experiments,7 it was found
that depending on the configuration of the external potential
�position on the sample�, both the case of a fully coherent
condensate with a single frequency �synchronized� and the
case of incoherent condensates with different frequencies
�desynchronized� can be realized. The experimental data sug-
gest that the underlying physics is analogous to the techno-
logically important phenomenon of mode locking in laser
gyroscopes.8

In the present Rapid Communication, we will present a
theoretical picture of the mode synchronization in polariton
condensates. Because the average frequency of the polariton
condensate is related to the macroscopically occupied state, a
mean field description can be used in a first approximation. A
nonequilibrium mean field model for polariton condensates
was proposed in Ref. 2 and used to describe their peculiar
spatial and spectral shape in Ref. 9. A similar model was
introduced in Ref. 4. Within the latter framework, mode
locking effects of polariton condensates are investigated by
Eastham.10

The simplest system that allows us to understand the syn-
chronization physics of a polariton condensate in a disor-
dered microcavity consists of two coupled wells with a po-
tential difference. Our analysis will show that a Josephson
flow is responsible for the phase locking between the con-
densates. If the potential difference between the wells ex-
ceeds a certain critical value, the Josephson flow cannot
reach a steady state and the condensates no longer share the
same frequency. Two condensates with different frequencies
are formed in each well and density oscillations reminiscent
of the ac Josephson effect appear.

The dynamics of the condensate macroscopic wave func-

tion ��r� will be described by a generalized Gross–Pitaevskii
equation.2 Following the work on Josephson physics with
spatially separated ultracold atomic Bose–Einstein
condensates,11,13 the condensate wave function is projected
on the wave functions �1,2 of each well �normalized as usual
as �dr�� j�2=1�.12 In terms of the amplitudes �1,2 in the two
wells, the total polariton wave function reads ��r�
=�1�1�r�+�2�2�r� and the dynamics is given by2

i
d� j

dt
= � j� j − J�3−j + �Uj�� j�2 + Uj

Rnj�� j +
i

2
�R�nj� − ��� j ,

�1�

where � is the polariton line width �for simplicity taken to be
equal in both wells�, J is the hopping energy, and � j is the
ground state energy of each well in the absence of coupling.
The term R�nj� describes the gain of the condensate due to
the stimulated scattering from the excitonic reservoir into the
lower polariton states. Polariton-polariton interactions are
described by the charging energy Uj�� j�2 and the interactions
between the reservoir and condensate polaritons are taken
into account by the term Uj

Rnj.
The reservoir occupation n1,2 results from the equilibrium

between the pumping at a rate P1,2 and its decay,

dnj

dt
= Pj − �Rnj − R�nj��� j�2, �2�

where the term �Rnj represents losses through channels dif-
ferent from the condensate. The stationary state and excita-
tion spectrum of the symmetric system ��1=�2, U1=U2, and
U1

R=U2
R� are discussed in Ref. 2, where it was found that the

Josephson plasma oscillations are damped due to the non-
equilibrium nature of the polariton condensate.

Let us start to analyze under which conditions a synchro-
nized steady state exists if the two potential wells are de-
tuned. The wave functions in the two wells then take the
form �1,2�t�=��1,2ei�−�t��	/2�� and nj�t�=nj. Substituting this
state in Eqs. �1� and �2� gives

��� j = �� j + Uj� j + Uj
Rnj��� j − J��3−j exp�− i�− 1� j	�

+
i

2
�R�nj� − ���� j , �3�
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Pj = �Rnj + R�nj�� j . �4�

The imaginary part of Eq. �3�, expressing the conservation of
polariton density,

�� − R�n1,2���1,2 = � 2J��1�2 sin�	� , �5�

shows that a Josephson current IJ=2J��1�2sin�	� flows be-
tween the two condensates. With the help of Eqs. �3� and �5�,
the recombination rate R�n1,2� can be written as

R�n1,2� = � − �
� tan 	 � ��
� tan 	�2 + 4J2 sin2 	� ,

�6�

where the effective detuning 
� is shifted from the bare
detuning 
�=�1−�2 by the mean field shifts,


� = 
� + U1�1 + U1
Rn1 − U2�2 − U2

Rn2. �7�

Equations �6� and �4� finally allows us to find the phase
difference 	 as a function of the effective condensate detun-
ing 
�.

A simple analytical expression for 
� as a function of the
phase difference 	 exists for P1= P2= P and when the decay
of reservoir polaritons is most efficient through the conden-
sate: R�nj�� j��RnR, a condition that is expected to hold
well above the threshold. The solution to Eqs. �4� and �6�
then reads


� = −
2J2

�
sin�2	� if R�nj�� j � �RnR. �8�

As expected, the maximal value of the detuning 
�c
=2J2 /� increases as a function of the coupling between the
wells J and is inversely proportional to the polariton line-
width �.

Under the condition that the nonlinearity Uj in both wells
is equal, also a simple analytical expression for the bare de-
tuning 
� �see Eq. �7�� as a function of the phase difference
can be derived. Some algebra with Eqs. �3�–�8� yields


� = −
2J2

�
sin�2	� −

4JU1�o

�

sin 	

�1 + �2J/��2 sin2 	
− U1

Rn1�	�

+ U2
Rn2�	� , �9�

where �o is the condensate density in both wells in the ab-
sence of coupling �J=0� and n1,2�	� is defined by Eqs. �6�
and �8�. Note that for vanishing tunneling rate J, a synchro-
nized solution only exists for 
�=0: local interactions alone
cannot lock the two spatially separated condensates to a
single frequency.

A plot of the detuning as a function of the phase differ-
ence between the two wells according to Eq. �9� is shown in
Fig. 1�a� for several values of U1�o and zero interaction
strength between the reservoir and condensate U1,2

R =0. Up to
a critical value of the detuning, a stationary state with a
single frequency for the two condensates exists. The detun-
ing reaches a maximum value 
�max for a phase difference
	� /4, at which the flow IJ=2J��1�2sin�	� is maximal. For
a detuning larger than 
�max, no stationary synchronized so-
lution exists. It is important to note that the stationary syn-
chronized state does not coincide with a linear eigenstate of

the two-well system, for which 	� 	0,
, but that the con-
densation occurs in a new state that is formed above the
threshold for condensation.

The existence of a synchronized state up to a critical de-
tuning is very similar to the phenomenon of mode locking in
lasers that is most simply described by the Adler equation for
the phase difference 	 between two modes.8 The most im-
portant difference between polariton condensates and ordi-
nary lasers is the large value of the polariton nonlinearity as
compared to the very small photon nonlinearity in ordinary
lasers. Figure 1�a� shows that the polariton interactions help
the synchronization of the polariton condensate. The physical
reason is that the flow depletes the high energy well. As a
consequence, the blueshift of the higher well decreases and
the energy levels are pulled toward each other. The phase
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FIG. 1. �Color online� �a� The effective detuning 
� �in units of
the tunneling rate J� as a function of the phase difference 	. The
damping rates are taken � /J=�R /J=1 and equal pump rates P1

= P2. The blueshifts in the absence of the coupling U�o are shown
in the legend and U1,2

R =0. The inset shows the maximum detuning
as a function of blueshift in the absence of coupling. �b� The same
for zero condensate-condensate interaction U1,2=0 and nonvanish-
ing reservoir-condensate interactions UR

1 =UR
2 =UR �see legend�. The

inset shows the maximum detuning as a function of the blueshift in
the absence of coupling URnR

o .
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diagram as a function of the detuning 
� and pump power
�expressed in terms of �o� is shown in the inset of Fig. 1�a�.

The interactions between the reservoir and condensate po-
laritons can enhance the synchronization as well �see Fig.
1�b��. Where the condensate-reservoir interactions counteract
synchronization at small phase difference, a strong enhance-
ment is obtained for 	 close to  /2. Within the approxima-
tion that �R=0, the contribution to the detuning from
condensate-reservoir interactions does not depend on the
pump intensity. The experimental study of the synchroniza-
tion transition as a function of the pump power could there-
fore give an indication whether rather the condensate-
condensate or condensate-reservoir interactions are the
dominant mechanism for the synchronization. Unfortunately,
the independence of the pump intensity is spoiled when the
finite line width of the reservoir excitons �R is taken into
account. An alternative physical quantity that could give an
indication about the dominant mechanism for the frequency
synchronization of the condensates is the relative phase be-
tween the two condensates. A numerical stability analysis of
the synchronized state and a full integration of the motion
equations �Eqs. �1� and �2�� have shown that the expected
window for the relative phase when condensate-condensate
interactions prevail is 0� �	�� /4, where  /2� �	��
when condensate-reservoir interactions dominate.

In agreement with the analytical prediction, the numerical
integration of Eqs. �1� and �2� with the parameters for Figs.
2�a� and 2�b� show a synchronized solution. The densities
evolve to a constant value that is symmetric around the den-
sity in the absence of coupling �=�o. The condensate at
higher energy �full line� is less occupied due to the flow into
the lower energy one �dashed line�. The temporal Fourier
transform �Fig. 2�b�� is peaked at a single frequency for both
condensates.

In Figs. 2�c� and 2�d�, the ratio of the frequency detuning
with respect to the coupling 
� /J=3.8 is too large to allow

for the locking of the phases in the two wells. The time
dependent phase difference induces an oscillating Josephson
current that bears a striking analogy with the ac Josephson
effect, where the application of a constant voltage �chemical
potential difference� also leads to an alternating current. A
crucial difference with the ac Josephson effect in atomic
Bose–Einstein condensates concerns the relaxation: where
the ac Josephson oscillations of an atomic condensate are
damped at any finite temperature and its steady state is at
thermodynamical equilibrium with a single chemical poten-
tial, no relaxation to a single frequency state is possible for a
desynchronized nonequilibrium polariton condensate.

In the frequency domain, the alternating Josephson cur-
rents cause each condensate to have a small contribution at
the frequency of the other condensate �see Fig. 2�d��. These
overlapping frequency components give rise to residual co-
herence and thus interference fringes. So far, this residual
coherence was not observed experimentally7 in the desyn-
chronized regime. To verify our prediction of residual coher-
ence and density oscillations in the desynchronized regime,
the experimental investigations could be performed in a
more controlled way by using polariton condensates in mesa
microcavities.14

It should also be mentioned that for values of the detun-
ing, close to the maximal value 
��
�c, numerical integra-
tion of the Josephson equations shows that both the solutions
with stationary and oscillating densities can be reached, de-
pending on the initial conditions.

The generalization of the model equations �Eqs. �1� and
�2�� to the case of multiple wells with randomly distributed
energy levels, closer to the disordered reality of CdTe micro-

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8

9

10

U n
R
o /J

∆
ε/

J

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FIG. 3. �Color online� The probability to have a synchronized
condensate in a 2D disorder potential with uniformly distributed
energy levels in the interval �0,
�� is shown in gray scale. Only
interactions within the condensate are considered �U1,2

R =0�. The full
line shows the boundary of the locked solution for two wells that
are detuned by an energy 
�. The dashed lines show the border of
synchronization when only the central well in the 2D geometry is
detuned by an energy +
� �lower dashed line� or −
� �upper
dashed line�. From a 5�5 square of coupled wells, the central 3
�3 part is uniformly excited by the pump laser.
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FIG. 2. �Color online� Time evolution of the density �full ��1�
and dashed ��2� lines� and phase difference �dash-dotted line� in a
two-well geometry with frequency detuning �a� 
� /J=2 and �c�

� /J=3.8. �b� and �d� show the temporal Fourier transforms. Other
parameters: � /J=1, �R /J=5, and UP /J2=1.
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cavities, is straightforward. Figure 3 shows the probability to
reach a synchronized state as a function of the disorder
strength and interactions. The averaging of the synchroniza-
tion over many realizations of the disorder potential gives
rise to a transition region in the phase diagram where the
synchronization depends on the actual realization of the dis-
ordered potential. As a general trend, the interactions in-
crease the probability to reach a synchronized state as well as
the width of the transition region. For comparison, the ana-
lytically determined phase boundary of the two-level system
�Eq. �8�� is shown by the full line. The dashed lines show the
phase boundary for a regular two-dimensional �2D� array of
energy levels where the central level is detuned by an energy
+
� �lower dashed line� and by an energy −
� �upper
dashed line�. These lines show that a higher dimensionality
favors the synchronization for the noninteracting polariton
condensate. A physical explanation for this fact is that the
total Josephson flow out of �or into� the central well can
reach a higher value because it is distributed over more links.
Another clear feature is that the interactions help the syn-
chronization much more if the central well is negatively de-
tuned. Note finally that the presently considered inherently
nonequilibrium desynchronized phase is very different from
the thermodynamic equilibrium insulating phase studied for
microcavity polaritons in Ref. 5.

In summary, we have analyzed the recently observed
synchronization-desynchronization transition of polariton
condensates within mean field theory. An analytical condi-
tion for synchronization is derived for the case of a two-well
system. The many well configuration was analyzed numeri-
cally. The same phenomenology was found in both cases:
For small detuning between the different wells, the Joseph-
son currents and densities reach a steady state. For too large
detuning on the other hand, a steady state no longer exists
and the Josephson currents cause density oscillations in the
different condensates. Both interactions of the condensate
with itself and with the reservoir are shown to enhance the
synchronization. The similarities and differences with the Jo-
sephson effect of superfluids and the locking-delocking tran-
sition in ordinary lasers was clarified.
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